get_ccp.Rd
If multi segment lengths strategy is being used, at most one consistent correlation
peak (ccp) will be found for the corresponding basis segment. If the ccp cannot be identified,
return NULL
get_ccp(ccr_list, Tx = 25)
list, obtained by get_ccr_peaks
integer, the tolerance zone is +/- Tx
integer, the position of the ccp if it is identified; NULL
otherwise.
data("bullets")
land2_3 <- bullets$sigs[bullets$bulletland == "2-3"][[1]]
land1_2 <- bullets$sigs[bullets$bulletland == "1-2"][[1]]
x <- land2_3$sig
y <- land1_2$sig
segments <- get_segs(x, len = 50)
# identify the consistent correlation peak when ccf curves are computed
# based on y and segment 7 in 3 different scales;
# the number of peaks identified in each scale are 5, 3, and 1, respectively.
seg_scale_max <- 3
npeaks_set <- c(5,3,1)
outlength <- c(50, 100, 200)
ccr_list <- lapply(1:seg_scale_max, function(seg_scale) {
get_ccr_peaks(y, segments, seg_outlength = outlength[seg_scale], nseg = 7,
npeaks = npeaks_set[seg_scale])
})
get_ccp(ccr_list, Tx = 25)
#> [1] -6